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a b s t r a c t

In this paper a novel predictor–corrector algorithm is presented for the solution of coupled
gas-phase – particulate systems. The emphasis of this work is the study of soot formation,
but the concepts can be applied to other systems. This algorithm couples a stiff ODE solver
to a Monte Carlo population balance solver. Such coupling has been achieved previously for
similar systems using a Strang operator splitting algorithm, however, that algorithm dem-
onstrated several numerical issues which resulted in a high computational cost to acquire
adequate precision. In particular a source-sink instability was identified whereby a large-
magnitude source term present in the ODE system was competing with a similarly sized
sink term in the population balance. This instability required that the splitting step size
was very small in order to keep numerical error sufficiently low. A predictor–corrector
algorithm has been formulated to negate this instability. An additional efficiency is gained
with this algorithm as a principal computational cost of the Strang splitting algorithm is
removed: the requirement to re-initialise the ODE solver every splitting step. The numer-
ical convergence of the new algorithm is demonstrated, and its efficiency is compared to
that of the Strang splitting algorithm. Substantial computation time savings are demon-
strated, which allow a fixed error in three studied system functionals to be achieved with
an order-of-magnitude reduction in computation time.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many physical systems involve the formation and growth of a particulate phase within a gas-phase, for example soot,
titania and silica nanoparticle formation processes. The focus of this work is soot formation, but the principles can be applied
to other particulate systems. The formation of soot particles and other carbon products in combustion systems is a highly
complex process [1–4]. In recent years models have become available for the conversion of mass from the gas to the partic-
ulate phase [1,5–7], which calls for detailed modelling of the resulting soot particle populations.

In order to adequately characterise such systems, numerical models for the gas-phase and the particle population must be
developed and combined. Generally in these systems the particulate and gas-phases are strongly coupled, as gas-phase pre-
cursors form and react with particles. Gas-phase kinetics are generally described by a finite set of ordinary differential equa-
tions (ODEs), which can be solved using well-known numerical techniques such as Runge–Kutta. Substantial effort has gone
into the development of numerical population balance methods. The main numerical methods used are the method of mo-
ments with interpolative closure (MoMIC) [8], fixed [9] and moving [10] sectional methods, and Galerkin methods [11]. All of
these methods explicitly reduce the evolution of the particle population to a finite set of ODEs, which can be solved
. All rights reserved.
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simultaneously with the gas-phase kinetics equations. The disadvantage of these methods is that they are restricted to rel-
atively simple particle descriptions.

Stochastic particle methods, which originate from the Bird algorithm for molecular gas dynamics [12], have also been ap-
plied to these systems [13], and in particular have been used for the mathematical study of coagulation problems [14]. These
stochastic methods allow for arbitrarily complex models for individual particles [15,16] to be included with little additional
impact on computation times [17] when compared to simple models, but even for simple particle models the computational
requirements are much greater than for the other population methods mentioned above.

Coupling population balance calculations using the ODE methods mentioned above to chemical reaction calculations is
generally possible, but computational cost can be considerable [18]. Direct coupling between stochastic particle population
balance methods and the stiff differential equation solvers used to treat chemically reacting systems is a particularly chal-
lenging problem, because of the different natures of the two solution methods. Initial work in this area for soot formation
avoided a direct coupling by using MoMIC, the simplest of the above methods, to provide approximations to the effects
of the soot population during the solution of the gas-phase chemistry [13] and then recalculating the soot population with
a stochastic particle method in a post-processing step. However, accuracy requires a close coupling, which can be achieved
using an operator splitting method [19]. In that paper [19] the coupling of a stochastic soot population balance method to a
standard deterministic stiff chemistry solver for a simple batch reactor was reported. The case of a perfectly-stirred reactor
with outflow was also considered, but the results demonstrated that the numerical method was stretched to its limits and
possibly beyond.

The purpose of this paper is to discuss the limitations of the operator splitting method [19] and to propose a more robust
and less computationally demanding alternative.

This introduction is completed by a presentation of the equations describing the coupled systems already mentioned. The
numerical convergence of the new method is demonstrated, and the algorithm efficiency is compared to that of the previ-
ously used Strang splitting algorithm.

1.1. Formulation of equations

At a high level a system comprising particles in a reacting gas mixture may be described by a vector F ¼ ðf1; f2ÞT, where
f1 ¼ ðT;Ck; k ¼ 1;2; . . . ;KÞ contains gas-phase species concentrations and the temperature, and f2 ¼ nðxÞ represents the par-
ticle population by the number density of particles of type x 2 E. Here T is the system temperature, Ck is the concentration/
fraction of species k and K denotes the number of chemical species. The fixed-length vector f1 therefore has K þ 1 dimen-
sions. The number density of particles of type x is denoted by nðxÞ, where x is a vector of independent particle properties,
such that x 2 Rd for some d 2 N. The dimension d of the particle type x is left deliberately unspecified in order that the model
be as general as possible. Particle models used previously include the spherical particle model (d ¼ 1) [13,20], the surface-
volume model (d ¼ 2) [17] and the primary-particle model (d P 2) [21,22]. The entire particle population is then repre-
sented as a measure on the type space E # Rd, following the approach of Eibeck and Wagner [23] and Patterson et al.
[24]. At this stage no assumption is made as to whether f1 and f2 are discrete or continuous.

The differential equation for which an efficient solution method is sought may then be written as:
d
dt

f1

f2

� �
¼
A1ðf1Þ
A2ðf1; f2Þ

� �
þ
B1ðf1; f2Þ
B2ðf1; f2Þ

� �
ð1Þ
The operator subscript 1 denotes processes which occur to the gas-phase, and the subscript 2 denotes processes which affect
the particle population. It is instructive to relate these operators to a physical model, hence the relationships of these oper-
ators to the physical model for a batch reactor at constant pressure are now presented, which model has been used in the
subsequent numerical convergence studies. The physical interpretations of the operators in the context of a sooting system
are:

(1) A1 is the gas-phase chemical mechanism. This has no soot particle dependence.
(2) A2 is the change to the particle ensemble due to gas-phase processes. For a constant pressure system this describes the

expansion of gas and hence a decrease in particle number density.
(3) B1 is the change to the gas-phase chemistry due to particle inception and surface growth processes.
(4) B2 is the change to the particle ensemble due to all particle processes.

The gas-phase material balance is
dCk

dt
¼ _xkðC; TÞ � Ck

XK

k¼1

_xk

q

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A1

þ _gkðC; n; TÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
B1

ð2Þ
where _xk is the molar production rate of species k due to gas-phase reactions, q is the gas-phase density and _gk is the molar
production rate of species k due to particle processes. The additional assumption of constant temperature has been made,
which reduces f1 to K dimensions. The soot particle population balance is given by
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d
dt

nðxÞ ¼ �nðxÞ
XK

k¼1

_xk

q

� �
þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

þ IðC; T; xÞ þ KðT; xÞ þ
XP

p¼1
SpðC; T; xÞ

� �
nð�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B2

ð3Þ
where IðC; T; xÞ, KðT; xÞ and SpðC; T; xÞ are the inception, coagulation and surface reaction p operators for particles of type x,
respectively.

The non-linear coagulation operator K is defined by
KðxÞðnð�ÞÞ ¼ 1
2

X
y;z2E:yþz¼x

bðy; zÞnðyÞnðzÞ �
X
y2E

bðx; yÞnðxÞnðyÞ ð4Þ
where bðx; yÞ is the coagulation kernel for the coagulation of a particle of type x and a particle of type y. The transition kernel
used by Patterson et al. [20] is used for this study.

The surface reactions, which involve only a single particle at a time, are described by linear operators Sp defined by
SpðC; T; xÞðnð�ÞÞ ¼ kpðC; T; yÞnðyÞ � kpðC; T; xÞnðxÞ ð5Þ
where kpðC; T; xÞ is the rate at which a particle of type x undergoes surface reaction p, and is a non-linear function of C, T and
x, and where process p causes a particle of type y to become type x. For this study, the soot model of Appel et al. [1] is used to
define the surface processes, which will be discussed in a subsequent section.

2. Particle–chemistry coupling strategies

As discussed above, some method is needed to allow stochastic and deterministic methods to be employed in order to
solve for the soot particle population and the chemical species concentrations, respectively, in zero-dimensional systems
(for example, shock tubes and plug-flow reactors).

A direct splitting of A and B was successfully used by Celnik et al. [19] to solve (1), but proved computationally expensive
(around four minutes per run with 65,536 particles and a time-step size of 100 ls). Execution profiling showed that the high
cost arose because a large number of small splitting steps were required to maintain adequate coupling between theA and B
operators. At the start of each small step it was necessary to restart the stiff ODE solver used to calculate the effects of A,
because the solution had been changed by applying B, and so a costly step was repeated many times.

The need for very small splitting time-steps arose because there was a numerical instability inherent in the splitting,
which involved the competition of source and sink terms from the two operators. An example of this problem arose with
the gas-phase species pyrene, which is produced from smaller molecules by gas-phase reactions, but is heavily consumed
by the formation and growth of soot particles. The magnitudes of the pyrene source term (in A) and the sink term (in B)
were similar and significant in relation to the size of the pyrene concentration divided by the time-step length. For long
time-steps this resulted in unphysical oscillations in the value of the pyrene concentration, which became very high when
operator A was applied and very low when operator B was applied. Consequently rates of change of other solution compo-
nents, which depended on the pyrene concentration, could not be reliably calculated.

The system of chemical reactions represented by A is inevitably stiff and therefore has to be treated with implicit meth-
ods, which involve the inversion of Jacobian matrices. Such inversions are computationally very costly and so efficient solv-
ers rely on reuse of intermediate calculation results [25]. However, the application of the operator B1, using a Monte Carlo
algorithm, in a splitting step leads to a discontinuous change in (~f 1), the intermediate solution of f1, which makes the reuse
of intermediate results impossible. Therefore, after every application of B for the particle population part of the splitting, it
was necessary to completely regenerate the internal data of the stiff ODE solver used for A, resulting in high computational
costs.

2.1. Predictor–corrector

A predictor–corrector strategy was formulated to include approximations for B1 in the solution to the A part of the split-
ting in order to eliminate the source-sink instability discussed previously. In setting out the algorithm below no mention is
made of any internal sub-stepping that may be carried out by the solvers used for the operators A and B. The iterative ap-
proach to solving split-operator problems used here is similar to the approach used by Kanney et al. [26], and the use of an
approximation function for one operator is similar to the artificial sources used by Wolke and Knoth [27]. However, both
those papers were concerned with the decoupling of reactive transport equations, whereas here the coupling is between
the gas and particle phases.

2.1.1. Predictor
Suppose that approximate solutions to (1) have been calculated at times t1 < t2 < t3; . . . ; ti to give values
f1;1

f2;1

� �
;

f1;2

f2;2

� �
; . . . ;

f1;i

f2;i

� �

respectively. The method for advancing the solution to a time tiþ1 > ti, begins with a split-predictor step:
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(1) Fit a vector of functions B0ðtÞ (for example, interpolating polynomials) defined on ½ti�m; tiþ1�, for m 2 N previous points,
to
B1ðf1;i�m; f2;i�mÞ;B1ðf1;i�mþ1; f2;i�mþ1Þ; . . . ;B1ðf1;i; f2;iÞ:

Note that time tiþ1 is outside the interpolation range, hence the function extrapolates to this point.

(2) Using this approximation to B1, perform the first part of the splitting by solving
d
dt

~f 0
1

~f 0
2

 !
¼
A1ð~f 0

1Þ
A2ð~f 0

1;
~f 0

2Þ

 !
þ B0ðtÞ

0

 !
t 2 ½ti; tiþ1� ð6Þ

with initial condition

~f 0
1ðtiÞ

~f 0
2ðtiÞ

 !
¼

f1;i

f2;i

� �
:

(3) Fit a vector of functions F0ðtÞ (for example, interpolating polynomials) defined on ½ti�mþ1; tiþ1� to
f1;i�mþ1; f1;i�mþ2; . . . ; f1;i;
~f 0

1ðtiþ1Þ
(4) Using this approximation to f1, perform the second part of the splitting by solving
d
dt

f̂ 0
2 ¼ B2ðF0ðtÞ; f̂ 0

2Þ t 2 ½ti; tiþ1� ð7Þ

with initial condition

f̂ 0
2ðtiÞ ¼ ~f 0

2ðtiþ1Þ

to get a predicted solution ð~f 0
1ðtiþ1Þ; f̂ 0

2ðtiþ1ÞÞT for tiþ1.
2.1.2. Corrector
Subsequent split-corrector iterations are performed as follows, for J 2 N iterations:

(1) j  1
(2) Fit a vector of functions BjðtÞ (for example, interpolating polynomials) defined on ½ti�mþ1; tiþ1�, for mþ 1 points (note

inclusion of approximation to the point iþ 1), to
B1ðf1;i�mþ1; f2;i�mþ1Þ;B1ðf1;i�mþ2; f2;i�mþ2Þ; . . . ;B1ðf1;i; f2;iÞ;B1ð~f j�1
1 ðtiþ1Þ; f̂ j�1

2 ðtiþ1ÞÞ
(3) Solve
d
dt

~f j
1

~f j
2

 !
¼
A1ð~f j

1Þ
A2ð~f j

1;
~f j

2Þ

 !
þ BjðtÞ

0

 !
t 2 ½ti; tiþ1� ð8Þ

with initial condition
~f j

1ðtiÞ
~f j

2ðtiÞ

 !
¼

f1;i

f2;i

� �
:

(4) Fit a vector of functions FjðtÞ (for example, interpolating polynomials) defined on ½ti�mþ1; tiþ1� to
f1;i�mþ1; f1;i�mþ2; . . . ; f1;i;
~f j

1ðtiþ1Þ
(5) Solve
d
dt

f̂ j
2 ¼ B2ðFjðtÞ; f̂ j

2Þ t 2 ½ti; tiþ1� ð9Þ

with initial condition

f̂ j
2ðtiÞ ¼ ~f j

2ðtiþ1Þ
(6) j  jþ 1
(7) If j < J go to 2, else continue.
(8) Set solution at tiþ1 to be last calculated values, that is,
f1;iþ1

f2;iþ1

� �
 

~f j
1ðtiþ1Þ

f̂ j
2ðtiþ1Þ

 !
:



Fig. 1. Convergence with under-relaxation parameter r. Simulations were performed with Nmax ¼ 65536 and Dt ¼ 2500 ls. The top plots show the
deviation from the previous iteration for 100 iterations over the final time-step. Bold horizontal lines show the statistical uncertainty calculated for that set
of parameters. The bottom plots show the transient behaviour of M0 (zeroth moment) compared to the reference solution.
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2.1.3. Under-relaxation
It was found that the above algorithm did not converge reliably for large step sizes. This problem was typically exhibited

by oscillations between iterations. A standard under-relaxation method was used to enable smoothing between iterations by
constructing Bjþ1ðtÞ as explained above, but then replacing it by
~Bjþ1ðtÞ ¼ rBjðtÞ þ ð1� rÞBjþ1ðtÞ ð10Þ
in Eq. (9). Suitable choice of the under-relaxation parameter r allows this unstable oscillation to be negated. This method is
often used to prevent divergence in non-linear systems [28, p. 67] and is commonly referred to as successive over-relaxation
(SOR) [29].

Fig. 1 shows results from the test case (described below) for particle number density M0 (zeroth moment) at different
values of r. The top row of plots shows the deviation from the previous iteration over 100 iterations for the final time-step.
Two points are illustrated by these plots. Firstly the nature of the unstable oscillation is clearly seen in the leftmost plot for
r ¼ 0:1. Secondly it is clear that the iterations very quickly converge, after 3–5 iterations there is no discernable change in the
iteration deviations. The bold line gives the statistical uncertainty calculated for that simulation. The oscillation dominates
over the statistical uncertainty, therefore meaningful results cannot be obtained. This finding is mirrored in the bottom row
of plots, which show the transient behaviour of M0 compared to the reference solution. At r ¼ 0:1 the profile is drastically
different from the reference. Considering the middle plots at r ¼ 0:5, the iteration deviations still swamp the statistical
uncertainty, though the profile (bottom plot) is a better match for the reference. At r ¼ 0:8 (rightmost plots) the iteration
deviations are now of a similar magnitude to the statistical uncertainty and the profile is in good agreement with the refer-
ence. The value of r required to achieve a stable solution depended on the numerical parameters Nmax and Dt, defined later.
For solutions at higher numerical precision a smaller value of r could be used. For the numerical convergence study per-
formed here it was decided to use a constant value of r for all simulations. It was found that a value of r ¼ 0:9 was suitable
to allow all the cases tested to converge in this manner.

2.2. Methods for the split-operators

Eqs. (6) and (8), which can be thought of as the chemical reaction part of the problem, were solved using DDASSL [30].
DDASSL is a differential/algebraic equation solver which employs backward differentiation formulae (BDF) to solve implicit
systems. As DDASSL is a multi-step method it is a very stable solver, but suffers from a slow initialisation procedure. In the
previous work [19] the DDASSL solver was discounted because the discontinuity in the intermediate gas-phase solution ~f 1

discussed earlier requires solver re-initialisation at each splitting step. Instead the RADAU5 code [31] was used. As the algo-
rithm presented above eliminates that discontinuity in the intermediate gas-phase solution, DDASSL was used here as the
more stable solver.

Eqs. (7) and (9), which contain the soot particle part of the problem, were solved using a stochastic particle method
[23,13,24].

3. Numerical convergence

In the following sections the effects of the parameters of the stochastic particle algorithm and the coupling methods are
reported. The main stochastic parameters were the number of computational particles, Nmax, and the number of realisations
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of the stochastic process, L. The number of computational particles, which is effectively the resolution in particle type space,
E, was controlled with a particle doubling method [32,24] so that the actual particle count lay in the range ½12 Nmax;Nmax�, ex-
cept during initial transients. One realisation of the stochastic process was used during each corrector iteration, however, for
reporting results below, values are averaged over all the iterations performed for that time-step, which implies J ¼ L (see
next paragraph). A spherical particle model was used to describe soot particles, whereby E ¼ N and x 2 E is the number
of carbon atoms in a particle.

The predictor–corrector algorithm introduces two additional parameters: the iteration count J and under-relaxation con-
stant r, as described previously. Both the predictor–corrector and the Strang splitting coupling methods share a dependence
on the splitting time-step size, Dt, over which coupling takes place. Multiple runs were performed to reduce the statistical
uncertainty by averaging the output variables, and to give an estimation of the confidence interval. For this algorithm an
additional speed increase was identified, whereby the iterations over a time-step could be used as the independent runs
(L ¼ J), if a copy of the solution was stored after each iteration. The solutions after each iteration were given equal weighting
in this study.

3.1. Error measures

The error analysis used for this study is identical to that used for the previous study [19]. The deviation of the predicted
functional values were compared to those of a high-precision reference solution ~F, as it would be computationally imprac-
tical to find the true solution F due to the size of the particle state space E.

3.2. Test system

The simple test case reactor used in the previous study [19] was used again for this study to allow direct comparisons of
the results. The test case was a batch reactor with an initial C2H2=O2=N2=Ar mixture of equivalence ratio U ¼ 2:5. The tem-
perature was held constant at 1650 K and the pressure was 1 atm. No particles were present in the reactor initially and the
run time was 50 ms. The soot model was taken from Appel et al. [1], which is based on the chemical mechanism develop-
ment work of Wang and Frenklach [33]. In this model there are K ¼ 101 chemical species, and P ¼ 4 particle surface pro-
cesses. The model describes a single inception event by which two gas-phase pyrene (C16H10) molecules dimerise to form
a spherical particle with 32 carbon atoms.

While this test system is simple it never-the-less retains some physical basis as the conditions are similar to experimental
set-ups. Therefore it is reasonable to suppose that the convergence and efficiency results obtained for this test system would
be similar to those for a real combustion system.

In order to adequately discuss the numerical convergence, three functionals were chosen: particle number density, M0,
equivalent to the zeroth moment of the particle population; soot volume fraction, Fv, equivalent to the first moment of the
particle population; and the gas-phase pyrene concentration (A4). These functionals are identical to those used in the pre-
vious study and allow the effect of the algorithm parameters on both gas-phase and particulate properties to be discussed.

3.3. Algorithm parameters

The numerical convergence of the predictor–corrector algorithm was tested by varying the maximum particle count
Nmax 2 f2n;n ¼ 6;7; . . . ;17;18g and by varying the time-step size Dt in the range 5—5000 ls.

The parameters of the DDASSL solver used for the stiff chemistry were those found to produced good results in earlier
chemistry-only calculations, in particular the relative and absolute error tolerances were 1� 10�3 and 1� 10�6, respectively.
Simulations were performed with more stringent error tolerances over several orders of magnitude and no change in the
convergence behaviour was observed, therefore these tolerances were deemed sufficiently small to not affect the conver-
gence results. All predictor–corrector simulations were performed using an under-relaxation constant r ¼ 0:9, which was
found to give stable results for all parameters. L ¼ J ¼ 100 runs/iterations were performed for all simulations. Linear func-
tions were used as the approximation functions BjðtÞ and FjðtÞ. The number of points used to fit these functions was m ¼ 1.

The reference solution ~F was generated by using parameters Nmax ¼ 524288; Dt ¼ 5 ls and L ¼ J ¼ 50. For comparison
this simulation took approximately 12.5 days (> 107 s) to complete on a typical computer of today.

3.4. Convergence results

Fig. 2(left) shows the convergence of total relative error of the three functionals M0; Fv and A4 with respect to time-step
size for Nmax ¼ 65536. The trend lines in that figure show ideal first order convergence. All functionals demonstrate almost
first order convergence until about Dt ¼ 100 ls, at which point no further reduction in error appears possible. Initially it was
thought that the error tolerances in the ODE solver were limiting convergence, however, the same results were obtained
when the relative and absolute tolerances were changed to 1� 10�7 and 1� 10�10, respectively. This suggests that the prob-
lem is unrelated to ODE solver tolerance. The study was repeated with a larger Nmax ¼ 262144, which is plotted in
Fig. 2(right). This figure shows similar behaviour to the 65536 study, but limiting error is smaller. This suggests that there
are two errors in competition: a splitting error associated with the time-step size, and a stochastic approximation error



Fig. 2. Relative error convergence with step size of the predictor–corrector algorithm. The error bars show statistical uncertainty. Held constant were
Nmax ¼ 65536 (left), Nmax ¼ 262144 (right) and L = 100 (both). Trend lines show ideal first order convergence.
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controlled by the maximum particle count. The error appears to reach a limit once the time-step is made sufficiently short
in Fig. 2 because it is then dominated by the stochastic approximation error.

Fig. 3 shows the convergence of total relative error with respect to maximum particle count for a fixed time-step size of
10 ls. The trend lines show order 0.5 convergence. All three functionals exhibit approximately order 0.5 convergence with
respect to particle count. The very small statistical uncertainties, exhibited by small error bars, suggest that the apparent
scatter of the points is due to variations in splitting error rather than the stochastic approximation. A time-step size of
10 ls was chosen because the results in Fig. 2 suggest that this is sufficiently short for total error to be controlled by
Nmax. This is backed up by Fig. 3 which demonstrates no limit of convergence in the studied range.

In the previous study [19] for Strang splitting it was found that there was approximately no dependence of total error on
maximum particle count, however, this new study suggests that this was probably due to the relatively large splitting time-
step of approximately 167 ls used. With that time-step size the splitting error would be dominant at all investigated particle
counts. That time-step size was used because it was difficult to reduce the statistical uncertainty sufficiently to get mean-
ingful results using the Strang splitting algorithm, which problem was not encountered using the predictor–corrector
algorithm.

Fig. 4 shows the transient behaviour of particle number density in the test system for different time-step sizes. This
figure illustrates that the predictor–corrector algorithm manages to approximate the reference solution far better than
the Strang splitting algorithm for larger time-steps. At Dt ¼ 5000 ls, for which only 10 steps are performed, the
predictor–corrector algorithm manages to oscillate around the reference solution, whereas the Strang splitting algorithm
Fig. 3. Relative error convergence with maximum particle count of the predictor–corrector algorithm. The error bars show statistical uncertainty. Held
constant were Dt ¼ 10 ls and L = 100. Trend lines show ideal order 0.5 convergence.



Fig. 4. Test system particle number density vs. time for Strang splitting algorithm (left) and predictor–corrector algorithm (right). Simulations were
performed with Nmax ¼ 65536 and L ¼ 100.

Fig. 5. Computation time as a function of time-step size for Nmax ¼ 64 (top) and Nmax ¼ 65536 (bottom). The left-hand plots show results for the predictor–
corrector algorithm, and the right-hand plots show results for the Strang splitting algorithm.
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hopelessly under-predicts. At Dt ¼ 500 ls the predictor–corrector algorithm already produces an excellent fit of the
reference case, while the Strang splitting algorithm has not yet reached the reference. Similar behaviour was observed for
the other two functionals studied; soot volume fraction and pyrene concentration.



2766 M. Celnik et al. / Journal of Computational Physics 228 (2009) 2758–2769
4. Algorithm efficiency

The discussion of computation times in this section is conducted with an understanding that such times are implemen-
tation dependent, in particular the source code compiler and computer architecture used are important. It is sufficient for
this discussion to state that both algorithms were implemented in the same FORTRAN90 code using the same compiler,
and that all simulations were performed on computers of the same specification. The computers were comparable to stan-
dard desktop machines available at the time.

Fig. 5 shows the dependence of computation time on the time-step size. The total computation time is further subdivided
into the time spent solving the gas-phase ODE system and that spent solving the Monte Carlo stochastic particle algorithm.
These plots show an approximately first order relationship between computation time and step size, which is expected. Re-
sults for both Strang splitting and predictor–corrector are plotted. For Nmax ¼ 64 (left plot) the computation time is domi-
nated by ODE solution time, while for Nmax ¼ 65536 (right plot) the computation time is dominated by the Monte Carlo
solver. This is as expected because Monte Carlo computation times generally scale approximately linearly with the number
of computation particles. There is an inherent time overhead when performing a Monte Carlo step as internal variables must
be set and the LPDA algorithm [17] loops over all particles at least once per step. This explains why the Monte Carlo com-
putation time has a dependence on time-step size.

Fig. 6 shows the dependence of computation time on the maximum particle count in a similar manner to Fig. 5. The
approximately first order dependence of Monte Carlo computation time on computational particle count is clearly seen.
The ODE solution time is unsurprisingly not a function of computational particle count for either algorithm. These plots
clearly demonstrate the computational advantage of not re-initialising the ODE solver after each time-step; the ODE solution
time for the predictor–corrector algorithm (open symbols) is clearly much lower than that for the Strang splitting algorithm
(solid symbols). The difference is far greater at shorter time-step sizes, approximately two orders of magnitude of compu-
tation time at Dt ¼ 5 ls. Additionally it can be seen from Fig. 6 that this ODE step optimisation is only active for lower values
Fig. 6. Computation time as a function of maximum particle count for Dt ¼ 5000 ls (top) and Dt ¼ 5 ls (bottom). The left-hand plots show results for the
predictor–corrector algorithm, and the right-hand plots show results for the Strang splitting algorithm.



Fig. 7. Computation time–error space diagram for particle number density (zeroth moment). The point-cloud shows the error vs. computation time for each
parameter set in the studied range (see text). The lines show approximately the lowest achievable error for a given computation time.

Fig. 8. Computation time–error space diagram for soot volume fraction (first moment). The lines show approximately the lowest achievable error for a
given computation time. The point-clouds (as in Fig. 7) have not been shown for clarity.

Fig. 9. Computation time–error space diagram for gas-phase pyrene concentration (A4). The lines show approximately the lowest achievable error for a
given computation time. The point-clouds (as in Fig. 7) have not been shown for clarity.
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of Nmax; when higher Nmax values are used, the Monte Carlo solution time dominates and the total computation times for both
algorithms are similar.

Figs. 7–9 illustrate the efficiency of both algorithms by highlighting the regions in the error-computation time space occu-
pied by the studied range of the Nmax (64, 256, 1024, 4096, 16384, 65536) and Dt (5–100 ls) parameters. Only points for
which the error is greater than the statistical uncertainty have been shown. Approximate threshold lines of lowest achiev-
able error vs. computation time are drawn to emphasise the differences between the algorithms. It is expected that these
lines are the best possible cases because any further increase in Nmax or decrease in Dt to reduce the error can only result
in a higher computation time, in accordance with the results in Figs. 5 and 6. Several features are common to all three plots.
There is a general trend towards smaller errors at larger computation times, which is expected. There also appears to be a
limit on the lowest possible computation time, which will be a result of fixed computational costs in the algorithms not con-
trolled by either parameter.

In all figures it is clear that the predictor–corrector algorithm provides a significant efficiency saving over the Strang split-
ting algorithm. It is possible to select a fixed error of 10�2 (1%) with the predictor–corrector algorithm and achieve an order
of magnitude reduction in computation time for functionals M0 and Fv, while the Strang splitting algorithm does not achieve
that error for A4, though an almost two order of magnitude reduction in A4 error for a fixed computation time is observed.
The predictor–corrector algorithm can achieve A4 errors below 10�3, which was the relative error tolerance set in the ODE
solver, while the Strang splitting algorithm cannot. The result for A4 is particularly encouraging, which must be due to the
inclusion of an approximation to the pyrene sink term in the gas-phase ODE system. By removing the source-sink instability
a very significant improvement in error is achieved.

5. Conclusions

A predictor–corrector algorithm has been developed and compared to a Strang splitting algorithm for the solution of stiff
ODEs coupled to a particle population balance, solved using a stochastic particle algorithm. This new predictor–corrector
algorithm incorporates an approximation to the source/sink terms for the ODE variables due to particle processes into the
ODE solution. In this way the source-sink instability exhibited by Strang splitting at large splitting steps is eliminated. By
removing these source/sink terms from the population balance solver a substantial computation time saving is also achieved.
The predictor–corrector algorithm has been shown to converge numerically order 0.5 with maximum computational particle
count (Nmax) and first order with splitting step size (Dt). The computation times of the predictor–corrector and Strang split-
ting algorithms have been compared, and it has been shown that the predictor–corrector algorithm can provide substantial
computation time savings, greater than one order of magnitude, depending on the choice of parameters. Finally the effi-
ciency of the two algorithms has been compared by plotting the error-computation time space diagram for three functionals.
The predictor–corrector algorithm is shown to be substantially more efficient that the Strang splitting algorithm, and can
achieve the same error for an order of magnitude reduction in computation time.
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